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An undulator is proposed based on the plasma wakefields excited by a laser pulse in a plasma
channel. Generation of the undulator fields is achieved by inducing centroid oscillations of the laser
pulse in the channel. The period of such an undulator is proportional to the Rayleigh length of
the laser pulse and can be sub-millimeter, while preserving high undulator strength. The electron
trajectories in the undulator are examined, expressions for the undulator strength are presented,
and the spontaneous radiation is calculated. Multimode and multicolor laser pulses are considered
for greater tunability of the undulator period and strength.

Undulator magnets have numerous applications in
beam physics, including the production of radiation
for light source applications and the cooling of particle
beams [1]. The wavelength λ of the radiation produced
by an electron undergoing oscillations inside an undula-
tor is λ = λu

(
1 +K2/2

)
/2γ2, where λu is the undulator

period, γ is the Lorentz factor of the electron, and K
is the undulator strength parameter. Presently, the un-
dulator period is limited to >1 mm using conventional
magnetic undulators [2]. Reducing λu is highly benefi-
cial as it will decrease the required electron energy for
the same specified radiation wavelength and, hence, de-
crease the size of the light source. Undulators with pe-
riods less than or on the order of a millimeter, often re-
ferred to as micro-undulators, are, therefore, of great in-
terest. Several micro-undulator ideas have been proposed
including electro-static undulators [3, 4], crystalline un-
dulators [5], RF-based [6], laser-plasma-based [7–9], and
optical undulators [10–17]. In this Letter we propose
a micro-undulator based on controlling the transverse
forces experienced by an electron beam inside a laser-
excited plasma channel. In this concept, a laser injected
into a plasma channel excites plasma waves, with the
appropriate transverse fields created by laser pulse cen-
troid oscillations in the channel. Together with recent
impressive progress in compact laser-plasma electron ac-
celerators (LPAs) [18], this new approach may lead to an
extremely compact free-electron laser (FEL).

Plasma channels can be used to guide laser pulses with
relativistic intensities (i.e., I[W/cm

2
] & 1018/(λL[µm])2,

where I and λL are the laser pulse intensity and wave-
length, respectively), and laser guiding in plasma chan-
nels is routinely used for efficient electron acceleration
in LPAs [19–22]. Consider a preformed plasma density
profile that is assumed to be parabolic in the direction
transverse to the laser propagation

n(r) = n0

[
1 + (∆n/n0)r2/w2

0

]
, (1)

with r the transverse coordinate, n0 the on-axis electron
density, and ∆n the channel depth. For moderate laser
intensities, the laser spot size will remain constant dur-
ing the propagation in such a channel and will be equal

to w0 if the channel depth is equal to ∆n =
(
πrew

2
0

)−1
,

where re = e2/mc2 is the classical electron radius [18]. If
the laser pulse enters the channel off-axis or under some
angle, the laser beam centroid will oscillate as it propa-
gates, with characteristic oscillation length equal to the
Rayleigh range ZR = πw2

0/λL. For P < Pc and a0 < 1,
where P is the laser pulse power, Pc[GW] ' 17(kL/kp)

2

with kL = 2π/λL and kp =
√

4πren0, and a0 = eAL/mc
2

is the normalized laser vector potential, the laser beam
centroid oscillates according to [23, 24]

xc(z) = xci cos(z/ZR + ϕ), (2)

where xci is maximum centroid displacement and is ϕ an
arbitrary phase. Ponderomotively driven plasma waves,
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FIG. 1. Schematic of the plasma undulator.

or wakefields, created inside the plasma channel by a
short laser pulse with matched spot size and oscillat-
ing centroid will follow the laser beam centroid provided
kpZR � 1. As will be shown below, this can be used for
controlling the transverse fields of the plasma wave. An
electron beam injected in such a plasma undulator will
experience transverse oscillations leading to efficient radi-
ation generation. An illustration of the plasma undulator
is depicted on Fig. 1: A short laser pulse (depicted with
red color) is propagating through the plasma channel and
exhibits oscillatory centroid motion due to an initial laser
centroid displacement. Wakefields created in the plasma
also follow the oscillatory laser centroid motion. An elec-
tron beam injected behind the laser pulse (depicted by
a collection of points) experiences transverse, thus focus-
ing, fields (lower panel) with periodic structure set by
the laser centroid oscillation. The periodically-changing
focusing field serves as an undulator and the oscillating
electrons produce radiation.

We start by deriving the structure of the wakefields ex-
cited by the laser pulse undergoing centroid oscillations
inside the plasma channel. We assume that the chan-
nel is shallow, kpw0 > 1. We also assume that the laser
vector potential amplitude is small a0 < 1, and linear
plasma theory can be applied (see, e.g., [18] and refer-
ences therein). We take the laser pulse profile to be Gaus-
sian in all dimensions (i.e., the laser pulse intensity is
proportional to I ∝ exp

[
−2r2/w2

0

]
exp

[
−2t2/τ2

L

]
). The

plasma is underdense, such that the laser pulse trav-
els through the plasma near the speed of light in vac-
uum c. In the following, the z-axis is the laser prop-
agation/channel axis. Using linear plasma theory [18],
the potential of the laser-excited plasma waves can be
expressed as

φ(x, ξ) = −a2
0C sin (kpξ) e

−2[(x−xc)2+y2]/w2
0 , (3)

where φ = eΦ/mc2 is the normalized scalar poten-
tial, C =

√
π/2(kpτL/4) exp(−k2

pτ
2
L/8) for a linearly-

polarized Gaussian laser pulse (for an optimized laser
pulse duration C =

√
π/8e ≈ 0.38, and C → 2C for a

circularly-polarized laser), ξ = z − ct, and xc is given

by Eq. (2). The electric fields, under the assumptions
above, are E/E0 = −k−1

p ∇φ, where E0 = mc2kp/e, and
the equation of motion for an electron in the wakefield is
d(p/mc)/d(kpct) = −E/E0. We consider injection of the
electron beam at a wake phase such that Ez ' 0. For a
single electron, or ultrashort beam, one can consider in-
jection at cos(kpζ) = 0, where Ez = 0. For an extended
beam one can consider a beam shape and number of elec-
trons that will fully load the wakefield, i.e., cancel the
longitudinal wakefield created by the laser pulse with the
wakefield created by the electron beam. (Beam loading
is discussed below.)

Consider |x − xc| � w0, i.e., the amplitudes of both
the laser pulse centroid and electron beam oscillations are
small compared to the laser spot size. (Below we discuss
the influence of the exponential term in the wakefields
on the radiation spectra.) In this limit, the motion of an
electron with relativistic gamma factor γ0 � 1, injected
in the phase where Ez = 0 and Ex is positive and has
the maximum absolute value, is described by a linear
harmonically-driven oscillator equation,

d2x/dz2 + k2
βx = k2

βxci cos (z/ZR + ϕ) , (4)

where

kβ =

(
4a2

0C

γ0w2
0

)1/2

(5)

is the betatron wavenumber. (The equation of motion
in the transverse direction orthogonal to the laser beam
centroid motion is d2y/dz2 + k2

βy = 0.) The transverse
momentum of the electron is

px/mc = aβx sin (kβz + ψβ) + au sin (kuz + ϕ) , (6)

where ku = 1/ZR, ψβ is a phase determined by the elec-
tron injection relative to the laser beam centroid oscilla-
tion,

aβx = γ0kβ

∣∣∣∣xm − (kβZR)2xci
1− (kβZR)2

∣∣∣∣ (7)

=
[
(γ0kβx0 + aukβZR cosϕ)

2
+ (au sinϕ)

2
]1/2

(8)

is the betatron strength parameter, with xm the maxi-
mum transverse displacement of the electron with respect
to the channel axis, x0 = x(z = 0) [Eq. (8) assumes
dx(z = 0)/dz = 0], and

au =
γ0kuk

2
βxci

k2
u − k2

β

(9)

is the undulator strength parameter. The electron is os-
cillating with two characteristic spatial periods: the beta-
tron motion (with period 2π/kβ) and the motion induced
by the laser pulse centroid evolution (with period 2πZR).
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FIG. 2. Undulator strength au given by Eq. (11) versus un-
dulator period λu for several values of laser amplitude, wave-
length, and centroid displacement: (a) a0 = 0.28, λL = 1 µm,
and xci/w0 = 0.2; (b) a0 = 0.28, λL = 1 µm, and xci/w0 =
0.3; (c) a0 = 0.5, λL = 10 µm, and xci/w0 = 0.4; and (d)
a0 = 0.5, λL = 1 µm, and xci/w0 = 0.2.

The laser beam centroid oscillations generate undulator
motion with the same period

λu = 2π2w2
0/λL. (10)

For kβZR � 1, or 2πa0

√
C/γ0 � λL/w0, the undulator

strength parameters may be approximated as

au ≈ 4πa2
0Cxci/λL. (11)

The condition kβZR � 1 approximately holds for the
parameters considered in this paper. Note that the un-
dulator strength parameter is independent of the electron
transverse position. This is in contrast to a simple plasma
focusing channel [25], such as that considered by an ion-
channel laser [26]. The achievable undulator strength au,
given by Eq. (11), and λu is shown in Fig. 2 for differ-
ent laser pulse parameters and initial centroid displace-
ments. An undulator strength on the order of unity can
be achieved for undulators with mm period.

The properties of the radiation produced by a relativis-
tic electron oscillating in undulator and focusing fields are
well-known [1, 2, 27, 28]. Specifically, the n-th harmonic
of the normalized undulator radiation wavenumber is

κn =
nκ

1 + a2
u/2 + a2

β/2 + γ2
0θ

2
, (12)

where κ = k/(2γ2
0ku) and θ is the azimuthal angle, with

γ0θ � 1 and a2
β = a2

βx + a2
βy. For sufficiently high cur-

rent and beam quality, partially coherent radiation may
be generated by the FEL mechanism [28]. For the FEL
instability to grow, beam parameters must be chosen
such that 〈a2

β〉/2 is less than the FEL parameter. For
a matched, symmetric beam on-axis, the rms betatron
strength parameter is, from Eq. (8),

〈a2
β〉 = γ0kβεn + a2

u

[
(kβZR)

2
cos2 ϕ+ sin2 ϕ

]
, (13)

where εn is the normalized emittance of the electron
beam. With kβZR < 1, 〈a2

β〉 is minimized for ϕ = 0, π.

This plasma undulator configuration is in a strongly fo-
cused regime, and for typical LPA beam parameters [18]
with ultra-low emittance [29, 30], the beam transverse
size will be smaller than the radiation mode size.

Consider the radiation produced by an LPA-generated
electron beam propagating through a plasma undula-
tor with the laser-plasma parameters n0 = 1018 cm−3,
λL = 1 µm, w0 = 7 µm, a0 = 0.28, and with the laser
matched to the plasma channel with centroid oscillation
amplitude xci = 2.5 µm. Consider an electron beam
phased such that kpζ = 3π/2 and ϕ = π, with γ0 = 1000
(unless stated otherwise, the rms energy spread of the
electron beam is assumed to be σγ/γ0 = 1%). For these
parameters, λu = 0.97 mm and au = 1.01. For the radia-
tion calculation, we have assumed that an electron beam
is matched to the focusing forces [25]. Numerical results
using vdsr [31] in 2D, with Nu = 30 undulator periods
and εn = 0.1 µm, are summarized in Fig. 3. Figure 3
shows the radiation spectrum d2Nph/[Ne(γ0θ)d(γ0θ)dκ],
where Nph is the number of photons and Ne is the
number of beam electrons, as a function of the nor-
malized wavenumber κ and normalized azimuthal an-
gle γ0θ. Also shown is the on-axis radiation spectrum
(solid white line). The peak of the fundamental har-
monic of the undulator radiation spectrum is located
at κ1 = (1 + a2

u/2 + 〈a2
β〉/2)−1 ≈ 0.62. The harmon-

ics of the undulator radiation given by Eq. (12) are
also shown (white dashed curves). Only odd harmon-
ics are generated on-axis, whereas both odd and even
harmonics are generated off-axis. The electron beam
in the plasma undulator also exhibits betatron oscilla-
tions and the peak of the betatron radiation is located
at κβ = (kβ/ku)(1 + a2

u/2 + 〈a2
β〉/2)−1 ≈ 0.15. The

magnitude of betatron radiation is much smaller than
the radiation generated at the undulator frequency (since
a2
β � a2

u). Note the appearance in Fig. 3 of additional
emission at the sum frequencies κ1 +mκβ , with m a pos-
itive integer.

Figure 4 depicts the on-axis radiation spectrum as a
function of normalized frequency κ for beams with dif-
ferent values of emittance and energy spread, for the
plasma undulator with same parameters as above. Fig-
ure 4 shows the on-axis radiation spectrum from an ideal
beam (zero emittance and no energy spread) calculated
using vdsr (green curve) and using standard undulator
radiation theory (dashed black curve) [28]. In Fig. 4, the
on-axis radiation spectrum produced by electron beams
with εn = 0.1 µm (blue curve) and εn = 0.025 µm
(red curve) are shown. One can see the expected effect
of electron beam divergence; the lower the divergence,
the narrower the spectrum. Figure 4 also shows (ma-
genta curve) the radiation for a beam with εn = 0.1 µm,
but with the exponential term in the wakefield included
[cf. Eq. (3)]. The spectrum peak is located at higher fre-
quency due to the decrease in the undulator strength.
Approximately, the strength of the undulator decreases
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FIG. 3. Normalized radiation spectrum generated by a beam
with εn = 0.1 µm and σγ/γ0 = 0.01, in a plasma undula-
tor with au = 1.01 and Nu = 30. Harmonics, Eq. (12), are
shown with white dashed curves. The spectrum for θ = 0
(arb. units) is shown with white solid line. Peaks correspond-
ing to betatron radiation, fundamental and 3rd harmonics of
the undulator radiation are annotated with white arrows.
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FIG. 4. On-axis spectrum showing the fundamental undula-
tor radiation for several emittance values: εn = 0.1 µm (blue
curve), εn = 0.025 µm (red curve), ideal point-like electron
beam with zero emittance and no energy spread [from numer-
ical calculations (green curve) and from theory (dashed black
curve)], and εn = 0.1 µm with exponential term in the wake-
field included (magenta curve). All beams except ideal point-
like electron beam case have an energy spread σγ/γ0 = 1%.

by a factor of exp(−2x2
ci/w

2
0) due to the decrease of the

focusing field amplitude off-axis. For the above example,
exp(−2x2

ci/w
2
0) ≈ 0.8. The decrease in field strength due

to the exponential term will depend on the particular
situation and can be mitigated by using stronger laser
pulses with smaller initial centroid displacements. In the
case of the electron bunch with finite emittance and en-
ergy spread, the undulator radiation spectrum is broad-
ened compared to the case of a single electron resulting
from the beam angular divergence and energy spread.

In our analysis, we have assumed that the electron
beam is loaded at the phase where Ez = 0 and have ne-
glected the effects due to the longitudinal field Ez. This
is valid for the case when longitudinal electron beam size
is much smaller than the plasma wavelength (and suffi-

ciently low beam charge) or when a beam of proper shape
cancels the longitudinal electric field due to beam load-
ing. Regardless of the beam length, beam loading will
limit the amount of charge [32]. The effect of beam load-
ing on the transverse focusing forces of the wake will be
small provided that xci � rbm, where rbm is the trans-
verse size of the electron beam matched to the wake fo-
cusing forces [25]. The effect of the electron beam de-
phasing can be mitigated by using appropriate plasma
density tapering [33].

Additional control of the plasma undulator parame-
ters can also be achieved using the beating of multi-
ple laser pulses with different (odd and even) Hermite-
Gaussian modes inside the plasma channel. Plasma wave
excitation using multiple laser modes was considered in
Ref. [34]. Using the same formalism as above, an electron
in the wakefield driven by two linearly-polarized Hermite-
Gaussian laser modes will produce undulator and beta-
tron radiation with the parameters:

kβx =

(
4Cα2

x

γ0w2
0

)1/2

, (14)

ku =

∣∣∣∣∣k2
p

2

(
1

kn
− 1

km

)
+

(n+ 1)

ZR,n
− (m+ 1)

ZR,m

∣∣∣∣∣ , (15)

au =
C |δn,m| ku
w0(k2

u − k2
β)
e−(∆k)kpL

2/2 cosh
[
(∆k)kpL

2
]
, (16)

with n (even) and m (odd) the mode numbers, ∆k =
kn − km, ZR,n and ZR,m are the Rayleigh lengths of two
laser pulses [both laser pulses have equal matched radii
w0 and equal rms (intensity) pulse lengths L], and it is
assumed kn, km � kp. The coefficient α2

x, assumed to be
greater than zero, is

α2
x =

a2
0,n

n!2n

[
n!

(n/2)!

]2

(2n+ 1)−
4a2

0,m

m!2m

[
m!

(m−1
2 )!

]2

, (17)

where a0,n and a0,m are the amplitudes of the laser modes
(defined in Ref. [34]). Note that, in general, the focus-
ing is asymmetric kβx 6= kβy, however, additional laser
pulses, polarized orthogonally (with ∆kL � 1) or tem-
porally separated, can be used, following the techniques
described in Ref. [34], to control kβy. The undulator
strength is given by the parameter

δn,m =
4a0,na0,m√
n!m!2n+m−1

(−1)
n+m−1

2
n!m!

(n2 )!(m−1
2 )!

. (18)

If the mode frequency difference is larger than the plasma
frequency, so that ∆k � kp ∼ 1/L, then the wake exci-
tation averages over the fast oscillation and au ≈ 0.

For the case when the two laser modes have the same
wavelength and considering the modes n = 0 and m = 1,
the undulator period is given by Eq. (10), and, for ku �
kβ , the undulator strength is

au ≈ 2πa0,0a0,1Cw0/λL. (19)
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Using multiple modes enables larger undulator strengths
(by a factor ≈ w0/xci). Note that a Gaussian laser with
a small centroid displacement is equivalent to this case
(k0 = k1): a modal decomposition of a Gaussian with a
centroid offset yields a0,0 = a0 and a0,1 = a0xci/w0, for
xci � w0.

The strong focusing of the plasma wave (large aβ) will
tend to suppress the FEL instability, since the trans-
verse momentum of each electron will vary with beta-
tron amplitude. As demonstrated in Ref. [34], using
multiple Hermite-Gaussian laser modes can reduce the
strong focusing of the wakefields (reduce kβ). Consider
the following example of a wakefield excited by two laser
modes: n = 0, m = 1, a0,0 = 0.145, a0,1 = 0.1,
λ0 = λ1 = 0.8 µm, and both modes matched to the
plasma channel (n0 = 1018 cm−3) with w0 = 7 µm. An
injected beam will experience a 1.2 mm undulator pe-
riod with strength au = 1.2. Assuming γ0 = 515 and
εn = 0.1 µm, the beam will generate 4 nm radiation.
The betatron period is k−1

β ' 3.3λu with average beta-

tron strength 〈a2
β〉 ' 0.01 for a matched beam. For 300 A

(3 pC in 10 fs), the FEL parameter is ρ ≈ 0.008.

In conclusion, we have proposed a laser-plasma-based
concept for a compact undulator capable of producing
sub-millimeter wavelength and undulator strength on the
order of unity. Such a plasma undulator is produced by
initiating pulse centroid oscillations in a plasma channel
or by using multiple laser pulses with different Hermite-
Gaussian modes (even and odd). Such a laser-plasma-
based undulator offers great flexibility and tunability.
For example, polarization control of the plasma undu-
lator is achieved by the direction of the initial laser pulse
centroid displacement, and elliptical polarization with ar-
bitrary ellipticity can be produced by injecting the laser
pulse into the channel off-axis and at an angle.
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